Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 914: 169899, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184245

RESUMEN

The detection and attribution of biodiversity change is of great scientific interest and central to policy effects aimed at meeting biodiversity targets. Yet, how such a diverse climate scenarios influence forest biodiversity and composition dynamics remains unclear, particularly in high diversity systems of subtropical forests. Here we used data collected from the permanent sample plot spanning 26 years in an old-growth subtropical forest. Combining various climatic events (extreme drought, subsequent drought, warming, and windstorm), we analyzed long-term dynamics in multiple metrics: richness, turnover, density, abundance, reordering and stability. We did not observe consistent and directional trends in species richness under various climatic scenarios. Still, drought and windstorm events either reduced species gains or increased species loss, ultimately increased species turnover. Tree density increased significantly over time as a result of rapid increase in smaller individuals due to mortality in larger trees. Climate events caused rapid changes in dominant populations due to a handful of species undergoing strong increases or declines in abundance over time simultaneously. Species abundance composition underwent significant changes, particularly in the presence of drought and windstorm events. High variance ratio and species synchrony weaken community stability under various climate stress. Our study demonstrates that all processes underlying forest community composition changes often occur simultaneously and are equally affected by climate events, necessitating a holistic approach to quantifying community changes. By recognizing the interconnected nature of these processes, future research should accelerate comprehensive understanding and predicting of how forest vegetation responds to global climate change.


Asunto(s)
Cambio Climático , Bosques , Humanos , Biodiversidad , Árboles , Sequías
2.
Environ Sci Pollut Res Int ; 29(41): 61550-61560, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34089453

RESUMEN

Coal mining activities are responsible for significant land degradation and often long-term irreversible effects on ecosystem functioning. To better understand how coal mined sites could be re-vegetated and ecosystem functioning restored, we address the role of the signalling hormone melatonin, which controls plant growth and development under adverse environmental conditions. We assessed the effects of exogenous melatonin on the plant species Althaea rosea by measuring morphological growth attributes, photosynthetic efficiency, reactive oxygen species (ROS)-induced oxidative damage and antioxidant defence developed by the seedlings when grown on coal-mined spoils under various water regimes. Water deficit and negative effects of coal mine spoils significantly decreased morphological growth attributes (i.e. plant height, root length and dry biomass), gas-exchange traits (i.e. net photosynthesis rate, inter intercellular concentration of CO2, transpiration rate, stomatal conductance and water use efficiency) and photosynthetic pigments (chlorophyll and carotenoid contents) by increasing the ROS-induce oxidative damage and decreasing antioxidant enzyme activities of A. rosea seedlings. However, melatonin applications increased photosynthetic performance and antioxidant enzyme activities and decreased hydrogen peroxide and malondialdehyde contents and ultimately improved growth performance of A. rosea in coal-mined spoils. Overall, our findings show how the application of optimum water (63.0 %field capacity equivalent to 1.67 mm day-1) and melatonin (153.0 µM dose) significantly improves the re-vegetation of coal-mined spoils with A. rosea. Our study provides new insight into melatonin-mediated water stress tolerance in A. rosea grown on coal-mined spoils, and this strategy could be implemented in re-vegetation programmes of coal mine-degraded areas under arid and semiarid conditions of the north-western part of China and perhaps across other arid areas worldwide.


Asunto(s)
Althaea , Malvaceae , Melatonina , Althaea/metabolismo , Antioxidantes/metabolismo , Carbón Mineral , Deshidratación/metabolismo , Ecosistema , Melatonina/metabolismo , Melatonina/farmacología , Estrés Oxidativo , Fotosíntesis , Especies Reactivas de Oxígeno/metabolismo , Plantones
3.
J Environ Manage ; 295: 113076, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34153587

RESUMEN

Ecosystem degradation as a result of coal mining is a common phenomenon in various regions of the world, especially in arid and semi-arid zones. The implementation of appropriate revegetation techniques can be considered crucial to restore these degraded areas. In this regard, the additions of spent mushroom compost (SMC) and wood biochar (WB) to infertile and degraded soils have been reported to enhance soil fertility and plant growth under water (W) deficit conditions. However, the combined application of W, SMC and WB to coal mine degraded soils, to promote Althaea rosea growth and facilitate subsequent restoration, has not been explored yet. Hence, in the current study a pot experiment was carried out by growing A. rosea on coal mine spoils to assess the influence of different doses of W, SMC and WB on its morpho-physiological and biochemical growth responses. The results indicated that several plant growth traits like plant height, root length and dry biomass significantly improved with moderate W-SMC-WB doses. In addition, the simultaneous application of W-SMC-WB caused a significant decrease in hydrogen peroxide (H2O2) (by 7-56%), superoxide anion (O2●‒) (by 14-51%), malondialdehyde (MDA) (by 23-46%) and proline (Pro) contents (by 23-66%), as well as an increase in relative water content (by 10-27%), membrane stability index (by 2-24%), net photosynthesis rate (by 40-99%), total chlorophylls (by 43-113%) and carotenoids (by 31-115%), as compared to the control treatment. The addition of SMC and WB under low-W regime enhanced leaf water use efficiency, and soluble sugar content, also boosting the activity of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase in leaf tissues, thus reducing the oxidative stress, as proved by low levels of H2O2, O2●‒, MDA and Pro contents. Finest growth performance under optimum doses of W (60% field capacity), SMC (1.4%) and WB (0.8%) suggest that revegetation of A. rosea with the recommended W-SMC-WB doses would be a suitable and eco-friendly approach for ecological restoration in arid degraded areas.


Asunto(s)
Agaricales , Althaea , Compostaje , Carbón Orgánico , Carbón Mineral , Sequías , Ecosistema , Peróxido de Hidrógeno , Suelo , Agua , Madera
4.
Glob Health Res Policy ; 6(1): 10, 2021 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-33712081

RESUMEN

BACKGROUND: Education institutions promptly implemented a set of steps to prevent the spread of COVID-19 among international Chinese students, such as restrictive physical exercise, mask wear, daily health reporting, etc. Success of such behavioral change campaigns largely depends on awareness building, satisfaction and trust on the authorities. The purpose of this current study is to assess the preventive, supportive and awareness-building steps taken during the COVID-19 pandemic for international students in China, that will be useful for planning such a behavioral change campaign in the potential pandemic situation in other parts of the world. METHODS: We conducted an online-based e-questionnaire survey among 467 international students in China through WeChat. The data collection duration was from February 20, 2020 to March 10, 2020 and we focused on their level of awareness, satisfaction, and trust in authorities regarding pandemic measures. Simple bivariate statistics was used to describe the background characteristics of the respondents along with adoption of the partial least squares-structural equation modeling (PLS-SEM) as the final model to demonstrate the relationship between the variables. RESULTS: In our study, the leading group of the respondents were within 31 to 35 years' age group (39.82%), male (61.88%), living single (58.24%) and doctoral level students (39.8%). The preventive and supportive measures taken by students and/or provided by the respective institution or authorities were positively related to students' satisfaction and had an acceptable strength (ß = 0.611, t = 9.679, p < 0.001). The trust gained in authorities also showed an acceptable strength (ß = 0.381, t = 5.653, p < 0.001) with a positive direction. Again, the personnel awareness building related to both students' satisfaction (ß = 0.295, t = 2.719, p < 0.001) and trust gain (ß = 0.131, t = 1.986, p < 0.05) in authorities had a positive and acceptable intensity. Therefore, our study clearly demonstrates the great impact of preventive and supportive measures in the development of students' satisfaction (R2 = 0.507 indicating moderate relationship). The satisfied students possessed a strong influence which eventually helped in building sufficient trust on their institutions (R2 = 0.797 indicating above substantial relationship). CONCLUSIONS: The worldwide student group is one of the most affected and vulnerable communities in this situation. So, there is a profound ground of research on how different states or authorities handle such situation. In this study, we have depicted the types and magnitude of care taken by Chinese government and educational institutions towards international students to relieve the panic of pandemic situation. Further research and such initiatives should be taken in to consideration for future emerging conditions.


Asunto(s)
Concienciación , COVID-19/psicología , Conocimientos, Actitudes y Práctica en Salud , Satisfacción Personal , Estudiantes/psicología , Adulto , China , Femenino , Humanos , Internacionalidad , Análisis de los Mínimos Cuadrados , Masculino , Persona de Mediana Edad , Modelos Teóricos , Servicios Preventivos de Salud/estadística & datos numéricos , Grupos de Autoayuda/estadística & datos numéricos , Adulto Joven
5.
Front Plant Sci ; 12: 766523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975950

RESUMEN

Surface mining is a critical anthropogenic activity that significantly alters the ecosystem. Revegetation practices are largely utilized to compensate for these detrimental impacts of surface mining. In this study, we investigated the effects of five water (W) regimes [W40: 40%, W48: 48%, W60: 60%, W72: 72%, and W80: 80% of field capacity (FC)], five nitrogen (N) (N0: 0, N24: 24, N60: 60, N96: 96, and N120: 120 mg kg-1 soil), and five phosphorus (P) fertilizer doses (P0: 0, P36: 36, P90: 90, P144: 144, and P180: 180 mg kg-1 soil) on morpho-physiological and biochemical parameters of Ammopiptanthus mongolicus plants to assess the capability of this species to be used for restoration purposes. The results showed that under low W-N resources, A. mongolicus exhibited poor growth performance (i.e., reduced plant height, stem diameter, and dry biomass) in coal-degraded spoils, indicating that A. mongolicus exhibited successful adaptive mechanisms by reducing its biomass production to survive long in environmental stress conditions. Compared with control, moderate to high W and N-P application rates greatly enhanced the net photosynthesis rates, transpiration rates, water-use efficiency, chlorophyll (Chl) a, Chl b, total Chl, and carotenoid contents. Under low-W content, the N-P fertilization enhanced the contents of proline and soluble sugar, as well as the activities of superoxide dismutase, catalase, and peroxidase in leaf tissues, reducing the oxidative stress. Changes in plant growth and metabolism in W-shortage conditions supplied with N-P fertilization may be an adaptive strategy that is essential for its conservation and restoration in the desert ecosystem. The best growth performance was observed in plants under W supplements corresponding to 70% of FC and N and P doses of 33 and 36 mg kg-1 soil, respectively. Our results provide useful information for revegetation and ecological restoration in coal-degraded and arid-degraded lands in the world using endangered species A. mongolicus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...